ACCOMPANIED BY ALPHA-PARTICLES TERNARY FISSION OF ACTINIDES INDUCED BY THERMAL NEUTRONS

L.V. Titova, S.G. Kadmensky, E.S. Petrykina

Voronezh State University, Voronezh, Russia E-mail: titova_lv@phys.vsu.ru

In [1-3] the virtual mechanism of ternary fission of the compound nucleus (A, Z), formed by the capture of the thermal neutron by target-nucleus (A-1, Z) as the two-stage process was suggested. At the first stage long-ranged α -particle with kinetic energy T_{α} close to the Coulomb barrier height is emitted from the nucleus (A, Z) with the forming of the virtual state of the intermediate nucleus (A-4, Z-2) with internal energy lower than its ground state energy and undergoing binary fission at the second stage. The yield N_{α} of the α -particles and the energy distribution $W_{\alpha f}(T_{\alpha})$ related to one act of the binary fission are defined as [1-3]

$$N_{\alpha} = \int W_{\alpha f} \left(T_{\alpha} \right) dT_{\alpha} = \frac{\Gamma_{\alpha f}}{\Gamma_{f}^{A}}, (1)$$
$$W_{\alpha f} \left(T_{\alpha} \right) = \frac{1}{2\pi} \frac{\left(\Gamma_{\alpha}^{A} \left(T_{\alpha} \right) \right)^{0}}{\left(Q_{\alpha}^{A} + \left| B_{n} \right| - T_{\alpha} \right)^{2}} = \omega_{\alpha} \frac{\hbar c \sqrt{2T_{\alpha}}}{2R_{\text{neck}} \sqrt{\mu c^{2}}} P(T_{\alpha}) , \qquad (2)$$

where Γ_{af} and Γ_{f}^{A} is the widths of the ternary and binary fission of compound nucleus (A, Z), consequently, $(\Gamma_{\alpha}^{A}(T_{\alpha}))^{0}$ is the width of the virtual α -decay of the nucleus (A, Z) from the deformed transition fission state corresponding to the configuration (0) of these nuclei with the neck radius R_{neck} between two fission prefragments, Q_{α} is the heat of the true α -decay of the nucleus (A, Z), B_{n} is neutron binding energy in (A, Z), $P(T_{\alpha})$ is α -particle penetrability factor of the Coulomb barrier formed by the sum of the non-spherical nuclear $V_{n}(\vec{r})$ and Coulomb $V_{c}(\vec{r})$ potentials of the α -particle interaction with nucleus (A-4, Z-2), ω_{α} is the probability of α -particle formation in the nucleus (A, Z), μ is the reduced mass of α -particle and nucleus (A-4, Z-2). Using the experimental energy distributions $W_{\alpha f}(T_{\alpha})$ [4-6] the estimations of the R_{neck} from (2) were obtained, taking into account that $P(T_{\alpha}) \approx 1$ at the maximal energies of the emitted α -particles T_{α} . The values of the neck radius R_{neck} are 2.37 fm for target-nuclei U^{233} , 2.66 fm for 235 U, 2.87 fm for 241 Pu and 2.54 for 251 Cf in fission induced by thermal neutrons and are in good agreement with R_{neck} from [7] and demonstrates that α -particle in ternary fission is escapes from the compound nucleus neck.

- 1. S.G. Kadmensky et al. PEPAN 63, 620 (2022)
- 2. S.G. Kadmensky, L.V. Titova, D.E. Lyubashevsky Phys. At. Nucl. 83, 326 (2020)
- 3. L.V. Titova, Bulletin MSU. Ser. 3: Physics. Astronomy. № 5, 64 (2021)
- 4. Yu.N. Kopatch et. al. // CP798 Nuclear Fission and fission spectroscopy, p. 115 (2005)
- 5. O. Serot et al. // CP769 Int. Conf, in Nucl. Data for Science and Technology, p. 857 (2005)
- 6. S.Vermote et al. Nuclear Physics A 837, 176 (2010)
- 7. O.Serot, N.Carjan, C.Wagemans, Eur. Phys. J. A. 8, 187 (2000)